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A causal Green's function formalism is established within the framework of 
statistical mechanics of composite particles. It is shown that it provides a 
systematic way for calculating shift and broadening of atomic levels in partially 
ionized plasmas. 
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1, INTRODUCTION 

Statistical mechanics, and in particular the Green's function method, is 
solidly established in cases of systems of particles which behave as if 
"elementary," i.e., maintain their identities and internal structure in the 
course of their interactions. But the standard approaches encounter grave 
difficulties in regimes where processes of decomposition, recombination, 
and rearrangement are important or even dominant; a typical case of such 
situations is the partially ionized plasma. 

This is the reason why a general approach to the statistical mechanics 
of composite particles has been developed in recent years. ~l-s~ A detailed 
review of the various approaches is going to be published; ~9) however, let 
us draw the common main feature of these approaches from an example: 
the hydrogenic plasma. The system is correctly described by using the Fock 
space: 

~=  ~ (~S p~| C ~) (1.1) 
i,j=o 
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where Of(P) and ~ e) are, respectively, the /-proton and j-electron Fock i 7 
subspaces. However, we can obtain a better representation of the system by 
using the Fock space: 

OO 

.~= @ (<p)@of(e)@of(a))  (1.2) 
i,j,k=O 

which is the Fock space of three types of particles: protons, electrons, and 
atoms; within this formulation we can apply the various tools of statistical 
mechanics (Wigner function and Green's function formalisms, etc . . . .  ). 
We see that the system is described by any subspace ~ '  of ~ isometric to of. 
The first task in the composite particle theory is to choose a subspace ~'  in 
such a way that atomic states are described in terms of the additional 

6~(a) "as atomic state spaces •k well as possible"; the task is complicated by 
the fact that the unitary transformation U (explicitly exhibited in the 
method of Ref. 5 and implicitly defined in the other methods) which maps 
of onto ~ '  preserves the antisymmetry with respect to atomic and free 
proton (electron) exchange. The transformed Hamiltonian has the desired 
properties; i.e., it involves terms describing the free propagation of free 
protons, free electrons and atoms and terms describing interactions among 
which we find ionization and recombination terms; the first terms of the 
Girardeau Hamiltonian are explicitly given at the beginning of Section 3. 

Up to now, some applications of these formulations have been pub- 
lished (an extensive review of all applications will be found in Ref. 9) but 
none of them is concerned with plasma physics. The aim of this paper is to 
develop a causal Green's function formalism within the frame of the 
formulation of Girardeau (5) in order to set up a systematic method leading 
to shift and broadening of atomic levels in partially ionized plasmas. 

In Section 2 we present our causal Green's function method within 
the framework of the many-electron quantum theory developed by 
Balescu (1~ which is particularly convenient when dealing with plasmas 
(the classical limits of the Wigner functions are the classical distribution 
functions). The relation between our method and the well-known Feynman 
method is discussed. 

In Section 3 we give the one-atom causal Green's function calculated 
by means of the method presented in Section 2. This Green's function is 
obtained from the composite particle Hamiltonian of Girardeau(S); the 
calculation is limited to electron-atom weak coupling approximation and 
some complicated exchange contributions are neglected. 

In Section 4, we show that a rough approximation of the profile of 
state (4, 0, 0} of hydrogen can be obtained analytically. 

In Section 5, we discuss briefly the rough result obtained in Section 4 
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and we comment on the advantages of our method; in particular we show 
that it provides a systematic way for calculating shift and broadening of 
atomic levels in more general cases (unstable plasma, strongly correlated 
plasma, quantum plasma, etc . . . .  ). 

2. GREEN'S FUNCTION EQUATION OF MOTION METHOD FOR 
THE USUAL MANY-ELECTRON PROBLEM 

Let us consider the many-electron problem treated by means of the 
formalism developed by Balescu. (10 We define the causal retarded one- 
electron Green's function as 

~(k'rt) = h-3Tr[a(hk,~-)a + (hk)p(t)], ~" > 0 

= h -  3Tr [ a (hk, t + ~')a + (hk, t)p(O) ], "r > 0 
= 0, < 0 (2 .1)  

where a(hk,'r) obeys the evolution equation 

d a(hk,~-)= d ~-~ (exp( ~H'r)a(hk)exp(- ~H'r) } 

_ _ i H~')  (2 .2 )  i exp( ~ H~'l( H,a(hk) }exp( -~ h 
in which H is the usual many-electron Hamiltonian. (11) 

If we Laplace transform ~(kTt) with respect to ~- we find in the 
noninteracting case 

1 ) 6 ( k z t ) = i  ~ m  - z  

In the general case, the pole of 6(kzt) gives h - l  times the energy of a 
dressed electron of wave vector k. 

Let us consider functions 

$s(k2p2 " ' "  ksp, kl~'k]t) = h-3STr[ a+ (P2 - lhk2, ~-) " ' "  a+ (P, - lhk2, ~') 

• a(p, + �89 a(p2 + �89 

• a(hk,, "c)a + (hk])o(t)] (2.3) 

~ , ( k l p l  �9 �9 �9 k ~ p j t )  = h - 3 " T r [ a  + ( P l  - � 8 9  " " " a +  ( P s  - � 8 9  

•  + � 89  a(p 1 + �89 
(2.4) 
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We notice that 

g,(k~'kt) = ~(kTt) (2.5) 

~-s(klpl �9 �9 �9 ksPs0t ) = fs(klpl'.'kspst) (2.6) 

where f , (  �9 �9 �9 ) is the usual S-electron reduced Wigner function introduced 
in Ref. 11. By means of (2.2) we find the following hierarchies: 

0 $1(klzk]t) . hk2 
8-~ = - t ~ m  $ l(k'~'k'lt) 

h -- ~ fdpzdl V/exp(-~, .  02)S2(l, p 2 , k l -  l ,r ,k'l ,  t ) (2.7) 

8 - i (  hk2 
8S $2(k2p2klzk'lt) = ~ ~ + k2" ~ ]g2(k2p2kl~'k'lt) 

l i t  ] 

) - ~ ~ 1 . 0 2  g2(k2 + I, p2,k I - l , l - ,kl , t  ) 

h 023) } 

)< g3(k2 - -  l, P2,l, p3,kl,% k'l,t) 

-hi fdpadlVtexp(h2 1.03)g3(k2, p2,1, p3, k l -  l, ~, k'l, t ) 

(2.8) 

8--~ g3(k2p2k3P3kl~'k'Lt) = - i ~ + k 2 - - -  + k 3 . m 

)< g3(k2P2k3p3k11"k'lt) 4- �9 �9 �9 (2.9) 

8 P~ 
8~ ~-'(klPlZt) = -- ikl" m ~ 

i h .012)} + -fT f dpzdlVt {exp( ~l" Ot2) -exp(-  ~l 

• ~ 1 - l, pl,l ,  p2,~-, t ) (2.10) 

8 - - i (  Pl 4-k2.  P2)  8--~ ~2(klplk2p2~t) = kl" -m m 6)'2(klpik2p2~t) + "" ~ (2.11) 

where 0 i stands for 8/8pi and 0 0. for 8/8pi- 8/Spj. We also need the 
following quantum cluster expansions: 

~ ) = P( l12)~l(klp1.rt)e-dl(k2p2Tt) 
+ ~2(klplk2p2~'t) (2.12) 
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where the symmetry  operator  P(1 [2) is defined in Ref. l 1, and 

g2(k2p2k1~-k~t) = Q(l l 2)~l(k2p2.ct)gl(kl.rk'lt ) 
+ E2(k2P2kFk']t) (2.13) 

S 3(k2p2k3P3k, Tk'] t) = p ( 1 ] 2 1 3) 67] (k2p2~-t) 67] (k3P3~-/) ~] (k 1 ~-k' 1 t) 

+ six 67]( �9 �9 �9 )C2( �9 �9 " ) terms 

+ three G:( .  �9 . ) $ ] ( -  �9 �9 ) terms 

+ G3(k2p2k3p3k]~'k'] t ) (2.14) 

where Q(112)(  Q(11213))  is the symmetry  o p e r a t o r  corresponding to 
e(112){e(11213)); for  example 

Q(1 1 2)67](k2p2~-t)$ ](kFk'ff) = 671(k2p21-t)g ](k1~-k~t ) 

/ 1 1 + O67](k] + ~ k 2 - P2, 

1 h h ,c,t) ~P2 + ~k~ - ~ k : ,  
/ 

)< gl (  1 1 gk2+ g p2,~,k'l,t) (2.15) 
Here,  19 is the statistical factor ((9 = -  1 for  electrons; however, 19 is 
conserved because we will have to set 19 = 0 in this formalism, see Ref. 11, 
in order  to get the classical limit). 

Although our  method  holds out of equilibrium, we restrict the follow- 
. ing developments  to the equilibrium state. So, the $s ( " " " ) and 6Y, ( �9 �9 �9 ) 

functions become independent  on t; moreover  the 67~( . - .  ) functions 
become independent  on ~; as a mat ter  of fact 

67s(k]p] �9 " �9 k~p,~') 

= h-3"Tr[exp( ~ H~)a+ (pl - -~k]) " " " a+ (ps - h k 0 

• + ~',O a(p, + ~,,~)exp( 

+ _ h , , , )"a+(ps -h ' , s )  --',~S~rlaO,, ~ 

>a(ps+ ~ks)'''a(P]+~kl)P eq] 
because 

i ~+eqexp( / ~ )  = e x p ( -  ~ h peq 
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2.1. First-Order Approximation (Hartree-Fock Approximation) 

We insert (2.13) into (2.7) and we neglect the @2(" "" ) term; we find 

a Sl(kll.k,) = _ i hk~ ~" -~m S l(kl~'k'l) - |  8qz3r/eh3;dl Vlqg(~kl _ hi)$ l(kl'rk]) 
- -  T 

(2.16) 

where q~( �9 �9 �9 ) is the Fermi distribution function and where we have used 
the homogeneity condition: 

~,(k,p!~- ) = fl(klp,) = 8qr3neS(kl)q~(p,) (2.17) 

and disregarded the V 0 term, exactly compensated by the continuous 
positive background effect. Then, we Laplace-transform (2.16) and we find 

i ~ - z  ~(kz) = ~(kO) - -h-| 8~raneh3fdl V,w(hk - hl)~(kz) (2.18) 

which can be diagrammatically represented by 

~(kz) = ~(kO) + �9 ~(kz) (2.19) 

So, we find 

where 

~(kz) = i( hk2 I 2m + - z  ~(kO) (2.20) 

AHF = Oneh3Jdl Vtq~(hk -- hi) (2.21) 
t "  

If we insert the momentum Fermi distribution function in (2.21), we find 
for h2k2/2rn + AHF the well-known Hart ree-Fock quasiparticle energy (see 
Raimes [12], p. 172). So, our point diagram corresponds to the open oyster 
Feynman diagram (see Mattuck, {~3) p. 79). 

2.2. Second-Order Approximation (Leading to the Random Phase 
Approximation) 

We insert (2.13) into (2.7); we find 

i( hk2 - zl~(kz) = ~(kO) - i--Oh 8~r3neh3 f dl E, cg(hk- hl)~(kz) 

_ ih f dp2dl V, exp( ~hi. 82)C2(I, p2,k - l , z , k )  (2.22) 

Then, owing to (2.7), (2.8), and (2.10), we write the evolution equation for 
E2( �9 �9 �9 ). In the right-hand side of this equation, we insert the first term of 
the cluster expansions (2.12), (2.13), and (2.14), we make use of the 
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homogeneity condition (2.17), and we only take into account the terms 
involving $1(k~k). At last we Laplace-transform the resulting equation in 
which we neglect the initial value ~2(1, P2, k - l, 0, k). So, we obtain C2(!, P2, 
k - l,z,k) as a functional of $1(kzk) and go( �9 �9 �9 ), we insert it in (2.22), and 
we find 

~(kz) =[ i( hk2~m - z) l-'~(kO) + [ i( hk2"~m - z/ ]-I - - i ~  8~3n ~ 3 
--U- 

I(h 2 )l -i • fdlV]ep(hk-hl)~(kz)+ i -2--~m-z W 

• f dpdl V, i -2m + l . - - - Z m  

- 1  

[ ( • l+Oh3neg~ p + ~ l  ~(kz) + exchange terms (A ) 

-+ {[h k_l 2 P l  hk2 f dpdl i - -  + !. -- --z i ~ m - Z  - ~  V t 2m m -4- 

i(~(8z'3ne) 2 
h v,[~(p 

h,)_+(p_h + -~ ~l)]q~(hk-hl)~(kz) x 

+ exchange terms (B)  

l 

(2.23) 

The derivation of this result is rather lengthy, but straightforward. Equation 
(2.23) for ~(kz) is equivalent to the momentum distribution function 
evolution equation (18.7.7) of Ref. 11, which has been derived by using the 
splitting of the Wigner function vector into its vacuum and correlation 
components. A similar splitting of the $s ( ' ' " )  function vector can be 
introduced in the present case by using (2.13)- and (2.14)-like cluster 
expansions. 

Equation (2.23) can be diagrammatically written: 

~(kz) = 

+ 

+ 

~(k0) + s ~(kz) 

' ( ~  G(kz) + exchange terms (A) 

~ - O  ~(kz) + exchange terms (B) (2.24) 

The above diagrammatic representation arises logically from the first 
Balescu diagram method. (1~ Systematic graphical representation of any 
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term in the general equation for ~ (kz) can be introduced, but this task is 
beyond the scope of the present work. We only notice that the contribution 
of both cycle diagrams of equation (2.24) is that of the Feynman ring 
diagram; exchange terms (A) and (B) are the contribution of the two other 
second-order Feynman diagrams. 

2.2.1. The Random Phase Approximation (RPA). We select the 
most divergent contributions which are proportional to any power of e2ne in 
the general equation for ~(kz); so, we are led to 

~(kz) = 6(kO) 

+ (  - + ~ + ' - - - - ' ~ + ' - ' ) ~ ( k z )  (2.25) 

where the contribution of the loop vertex has been established in Ref. 11. 
Equation (2.25) leads to 

~(kz) = { ( 1  - ,, 

0 
_ _ . . . .  

= i T~m + - - g -  - z  ~(kO) 

We first notice that 

where 

)}~(kO) 

h(k - l) 2 ] 
_ iO neh3 fd l  E, qp(h k _ hl)aRp A l,z 

h 2m 

(2.26) 

1 (2.29) eRPA(i,z) -- 1 - 0dRPA(! , Z) 

_ _  ~ p A ( l , z ) -  s~3"eh V ' f d P (  t'pm z)-I[rP(P+-2 ~l)] (2.27) 
At last, we get 

0 _  
�9 + ( , . . . . ~ + ,  _!+ . . . . .  /Oneh3fdlV,~(hk-hl)h 

{ [ h ( k - l )  2 ] ( h ( k - l )  2) 1 
• 1 -t'- e R p  A 1, z T2m + a~PA 1, z 2m + " " " ) 

_ iO neh3fdl V, r - hi) (2.28) 
h eRPA(l,z - h(k - I )2 /2m)  

where 
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is the dielectric constant in the RPA. So, we r e c o v e r  A R p  A (see Mattuck, (13) 
p. 163), i.e., AHF in which the Coulomb potential is replaced by the 
dynamically screened potential. Although IgRPA( �9 �9 " ) has a classical limit, 
we see that both AuF and ARp a vanish in the classical limit (for which we 
have to set O = 0). 

2.2.2. The Classical Limit for Plasmas, We select the most diver- 
gent contributions which are proportional to (e2ne)'e 2, n = 1,2 . . . . .  in the 
general equation for ~(kz); so, we are led to the equation 

~(kz) = ~(kO) 

+ - . .  + �9 �9 �9 F ( k z )  ( 2 . 3 0 )  

The summation of the rings appearing in the above equation is beyond the 
scope of the present work; however, we can expect to obtain a very rough 
approximation to (2.30) by using the equation 

~(kz) = ~(k0) + ~ ~(kz) (2.31) 

where the contribution of the S cycle is that of the closed cycle of Eq. (2.24) 
in which the Coulomb potential is replaced by the Debye potential. As can 
be seen in Eq. (2.24), this S cycle has a nonvanishing limit in the classical 
case (in which we have to set | = 0). 

2.2.3. The Boltzmann Approximation for Low Density Neutral 
Gases. If we select in the general equation for ~(kz) the contributions 
proportional to (e2ne)e 2n, n = 1,2 . . . . .  we are led to the equation 

~(kz) = ~(kO) 

+ . . .  (2.32) 

2.3. Discussion 

Our equation of motion method has some advantages with respect to 
the usual Feynman diagram method: 

(a) It holds for nonequilibrium systems; in particular it can be useful 
when dealing with systems in stationary nonequilibrium state forced by 
external stationary constraints. 

(b) It allows us to take into account effects arising from initial correla- 
tions (it has been already noticed (14) that the usual Feynman diagram 
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method cannot take into account these effects). A typical example of such 
contributions, which has been disregarded when deriving Eq. (2.23), is 

- 1  

- i 8 ~ r 3 n ~  

x h fdp3 v,n 0p2p3) (kz) 

where we have used the homogeneity condition 

~2(lpi'p') = 8.77"3n2~ (I --I- It),0 (lpp I) 

This term arises from one of the 02(- �9 �9 )$1(" " " ) terms of cluster expan- 
sion (2.14) when this cluster expansion is introduced into the evolution 
equation for E2(. �9 �9 ), see the derivation of Eq. (2.23). Far from equilib- 
rium, such contributions can become important when dealing with systems 
for which initial correlations are known to play a fundamental role. 

(c) The classical limit can be taken as in the Wigner function formal- 
ism for which this limit results from (1~ ~) (1) setting 

= 0 (2.33) 

into the cluster expansions, and (2) taking the limit 

l i m i [  ( h ) ( h )1 h- ,0h  exp ~ l . i~  - e x p  - ~ l . i ~  = i l - i~  (2.34) 

into the vertex contributions; this limit causes h to disappear. 
In our method, we first introduce (2.33) into the cluster expansions and 

take limit (2.34) into the vertex contributions when possible. But we have to 
pay attention when taking the classical limit of the contributions of the 
remaining vertices; let us consider for example equation (2.24): We find 
easily that the open cycle contribution vanishes but we cannot take limit 
(2.34) into the closed cycle contribution; we only can use the following 
approximation: 

h/  negligible with respect to p (2.35) 
2 

So, h does not disappear in the classical limit; we can understand this 
feature in the following way: 

(1) When we are dealing with two-time functions as 

Tr [a  + ( . . .  ~-)a( �9 �9 �9 ~-)a + ( . . -  ~-')a( �9 �9 �9 ~'I)01 (2.36) 

in which the number of creation operators at time T (~') is equal to the 
number of annihilation operators at time T (~-'), we find that h disappears 
when we introduce the classical limit (2.33) and (2.34) into the equations of 
motion. (l~ This feature results from the fact that (2.36)-1ike functions 



Causal Green's Function Formalism 705 

represent two time correlation functions corresponding to two physical 
observables, and thus, have a classical limit (which can be calculated within 
the framework of classical statistical mechanics). 

(2) On the other hand, we see that definition (2.1) has not a corre- 
sponding classical definition; as a matter of fact, (2.1)-like functions, in 
which the number of creation operators at time ~r (~") is different from the 
number of annihilation operators at time ~- (, '), are no longer two-time 
correlation functions corresponding to some two physical observables; they 
are two-time correlation functions associated to two states [usual interpreta- 
tion of ~(k~'), see Nozi6res, (15) p. 51]. Even if the system can be treated 
classically (the transport coefficients are related to (2.36)-1ike functions, and 
thus have a classical limit), the Green's function ~(k,r) appears to be 
essentially a pure quantum concept; as a matter of fact, ~(kz) is the 
Green's function of the Schr6dinger equation of a dressed electron; let us 
introduce 

i ~(kz) 
G ' ( k z ) -  h ~(k0) (2.37) 

Eq. (2.31) becomes 

h2k2 
l 

+ V(k, hz) - hz 6'(kz) = 0 (2.38) 

where 
V(k, hz) = ih ~ (2.39) 

We see that (2.38) is the Green's function equation corresponding to the 
Schr6dinger equation: 

- r  E) +(k) = E6(k)  (2.40) 

o r  

h 2 
2m Axt~(x) + f V(x - x', ~)tp(x')dx'-- 5 tp(x) (2.41) 

for the wave function tp(x) of an electron interacting with the medium by 
means of some nonlocal potential IT(x-  x', g), which is the analytical 
continuation of V ( x - x ' , E )  defined with g in the upper half complex 
plane. 

3. ATOMIC  GREEN'S FUNCTION FOR PARTIALLY IONIZED 
HYDROGENIC PLASMA IN THE WEAK COUPLING LIMIT 

After our Green's function method has been developed in the previous 
section within the framework of the usual many-electron problem we only 
summarize the results when dealing with partially ionized plasma. 
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We use the Hamiltonian for composite particle systems established by 
Girardeau (5) by means of a general Tani transformation: We only consider 
the following low-density terms: 

- -  h 2 + ~"dx~+ - -  h 2 /4 = f d X ~  + (X) ~ ~x~(X) -- (x) ~ ZX~,(x) 

+ aRa + (Rn)  2 ( M  + m) % + en a ( R ~ )  

+ ~ faRaXaxex'dx"~ + ( x ) ~  + ( x ) ~  + (x') 

• (Xxx'lHlRnx")~(x")a(Rn) + H.c.  

+ ~ ~ d R d R '  dxdx'a + (Rn)~ + (x)(RnxIHIR'n'x')cp(x')a(R'n') 
n n '  J 

in which 

(Xxx'[HIRnx") = - 6 (x '  - x " ) [  Vee(Xx  '-) + vee(xx')](Xx [Rn) 

(Rnx[HlR'n'x') 

= ~ (x  - x')fdY dr (R~ [Yy)[ Ve~(Yx) + V~(yx)](Yy ] R'n') 

(Xx I Rn) = 6 (R - AX - )~x)~. (x - X), A - M )~ _ m 
M + m  ' 

(3.1) 

[the rpn (""  ) are the hydrogenic wave functions, n is the set of usual 
quantum numbers]. In (3.1) we find successively the proton, electron, and 
atomic free propagation terms, the electron-atom ionization and recombi- 
nation terms, and the electron-atom scattering term. Then we introduce 

w + (hK) = (8~r 3 ) -  '/2fdX e x p ( i K  �9 X)cp + (X) ,  

a + (hLn) = (8~r3) - ' / 2 f d R e x p ( i L -  R)a + (Rn) 

w.(l) = (8~3) - ' / 2 f a r  exp(- il. r)q~.(r) 

e 2 
vee(I) = (87r3) - ' f a r  exp(-- il- r) vee(r) - -  87r3EO[2 

+ (hk) . . . .  

_ _ W~(l )  

(3.2) 

(3.3) 

(3.4) 

(3.5) 

M + m  
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and we define 

gl(Lm-L'n't) = h-3Tr[a(hLn.c)a + (hL'n')p(t)] (3.6) 

g 2(IpLn'rL' n' t) 

= h-6Tr[9~ + ( p -  2h-l,~')cp(p + h l,'r)a(hLnz)a+ (hL'n)p(t)l (3.7) 

We also need to define 

g~(KkrL'n ' t)  = h-3Tr[~p(hKr)~(hk~)a + (hL'n')p(t)] (3.8) 

S;(lpKk~-L'n't) 

h hl,.r)~(hK.r)~p(hk.r)a+ (hL, n,)p(t)] = h-6Tr[qv* (P - 5 l,'r)q~(P + 5 

(3.9) 

~ = h -3Tr [  r ( p -  h i,~')q~(p + h l , , ) p ( t ) l  (3.10) 

and introduce the cluster expansions 

g2(lpLnrL' n't) = ~](lp'rt)$1(Ln'rL'n't ) + E2(lpLn, L'n't ) (3.11) 

$~(lpKk,L'n ' t)  = ~-i(lp,t)g' ,(Kk,L'n't)  

1 1 h ~l,r,t) +| ~1- lp,~_p+ ~k-  

• S',(K, l p + 1 l,'r,L',n',t)+ ~(lpKk'rL'n't) (3.12) 

Owing to the usual interpretation (see Nozi~res, (15) p. 51), we notice 
that $ [(KkrL'n't) is the probability amplitude for an atom (center of mass 
momentum hL, internal quantum number  n) added to the system at time t, 
to become dissociated into a proton (momentum hK) and an electron 
(momentum hk) at time t + r. So, $~*$~( - �9 �9 ) increases from 0 to ne/n a 
when t increases from 0 to oe (ne electronic density, n a atomic density), and 

lira d 
, - . o  s ' , * (  �9 �9 �9 

is the ionization rate of an atom [state [hL, n)] into a proton-electron pair 
[state ]hKhk)]. In this way, the Green's function method provides a rigorous 
definition of the various ionization, recombination, and transition rates. 

By means of the equation of motion method we have developed in the 
previous section, we find that, at equilibrium, the Laplace transform of the 



qb
 

II 
X 

X 
X 

X 
I 

II + 

- 
~ 

~b
/j 

I 
"-

-"
Z 

,--
--

--
, 

> 
+ 

~a
 

,.
,j

 

--
-~

- 
~ 

+ 

I 
_ 

~ 
I 

~1
~ 

I 

II 
x 

x 
x 

I 

r
-

-
1

 

+ 
r-

 
+ 

s 
~ 

t 
- 

~1
~ 

-I-
 

~1
~ 

'~
 

I 
I 

+ 
~ 

+ 

+ 
~ 

+ 

I 
I 

~ 

0 
o ~

 
~ 

+ 
-~

 
qb

 
+ 

-~
 

I 
, 

, 
J 

q~
 

k 

b,
i 

(.C
O

 

,-Q
 

oa
 

0 e
. ~Z

 

0 



Causal Green's Function Formalism 709 

Oi(" " " ) represents the weak coupling (second-order) scattering in which 
the atomic proton-electron pair is dissociated in the intermediate state; 
Oi,ex( " 'o  ) represents an additional contribution to Oi(. �9 �9 ) arising from 
exchange effects between the incident electron and the atomic electron; 
Osc(" �9 �9 ) represents the weak coupling (second-order) scattering in which 
the atom suffers a transition in the intermediate state (the n = n 1 term in 
the summation represents the weak coupling elastic scattering). Osc,e• " " " ), 
which represents exchange contributions to Osc ( �9 �9 �9 ) does not appear in 
Eq. (3.14). Os~,~x( �9 �9 �9 ) and exact O i , e ~  ( �9 �9 �9 ) can be found by inserting in 
Hamiltonian (3.1) all the electron-atom ionization, recombination, and 
scattering exchange terms (see Ref. 5). We should find two type of terms in 
O~,~(. �9 �9 ) and O~c,~(. �9 �9 ): those arising from exchange effects between 
the incident electron and the atomic electron and those arising from 
exchange effects between the incident electron and the other electrons of 
the plasma. 

Equation (3.14) has been derived in a rather lengthy, but straightfor- 
ward way as Eq. (2.23) was; in particular O~,~• ) is approximated. 
Because an exact calculation with Hamiltonian (3.1) cannot lead to exact 
O~xx(-.. ) (as we explained just above), we disregard Oix~(. . -  ) in the 
following. We also notice that (3.14) can be represented diagrammatically 
in the following way: 

~(L~ntz) = , ~(L,n~O) 

+ 

+ ,, ~ ~(Llnlz) (3.18) 

equation: 

2(M + m) 
+En~ + ~.(Ljn1E ) + l~sc(L,nlS)]ff(L,n,) = S 4,(Llnl) 

(3.21) 

At last, owing to (3.14), we find that the Laplace transform of 

i ~(Llniz) 
G'(L,n, - r ) -  h ~(Llnl0 ) (3.19) 

obeys 

2(M "t- m) "t-En' + i[~[Oi(LlnlZ) -t- Osc(Llnl2)] - h z  ~'(LlnlZ ) = 1 

(3.2o) 
which is the definition equation for the Green's function of the Schr6dinger 
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in which ~ ( . . .  E) and/Tsc( �9 �9 �9 E) are the z = E/h value of the analytical 
continuation of ihOi(.., z) and ihO~(.., z) defined by (3.15) and (3.17) 
with z in the upper half complex plane. Equation (3.21) is a Schr6dinger 
equation written in a mixed representation (momentum representation for 
the atomic center-of-mass motion, internal quantum number representation 
for the proton-electron relative motion). It can be easily interpreted if we 
write it in momentum representation: 

fdLdl(L i,l%0+ ~($)ILI)~b(LI) = E~(Llil) (3.22) 

with 

(L, l l l%lLl)  = 28(L'n - 2 (M + m) +En (3.23) 

(L,I,I~(E)[LI) = 2 ~ ( L 1 -  L)q0*(l~)[ 17i(L,n$) + gsc(Lln$)]%(l) (3.24) 
n 

~ ( L l l , )  = 2 Cpn, ( l , )~(Lln l )  

So, (3.22) is the Schr6dinger equation describing an atom perturbed by the 
free electrons of the plasma; their effect is taken into account by the 
additional dressing potential U($). This equation has the following proper- 
ties: 

(a) It is a self-consistent eigenvalue equation. 
(/3) Its perturbative potential ~(E) is diagonal with respect to the 

eigenfunctions of the unperturbed Hamiltonian %0, which are 

qJL,.~(LI) = 8(L~-  L)%,(I) (3.25) 

So, the corresponding eigenvalues SL,n, are the solutions of the algebraic 
equation 

SL~n, - 2(M + m) + E~, + [~i(LlnlEL,n~ ) h- 17~c(L,nlEL~,, ) (3.26) 

The fact that unperturbed atomic wave function (3.25) is eigenfunction of 
the perturbed Schr6dinger equation (3.22) with eigenvalue EL,n, such that 
Im gL,~, < 02 means that a proton-electron state, whose wave function is 
(3.25) at a given time, suffers a decay resulting from its interaction with the 
surrounding medium; proton-electron states which could be interpreted as 
atomic states in the plasma have clearly distorted wave functions with 
respect to that of isolated atomic states; in this sense, our method gives, at 
present stage, a low-density approximation. 

2 This property of the Green's function poles is pointed out in the various textbooks; see for 
example Refs. 15 and 17. 
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(y) Its total Hamiltonian does not allow any more the separation 
between the center-of-mass motion and the relative motion: this method 
does not allow the splitting of AEL,., = EL,., -- hZL~/2 (M + m) - E.,  into a 
correction to center-of-mass energy and a correction to the internal energy. 

4. PROFILE OF THE {4 ,0 ,0}  LEVEL OF HYDROGEN 

As an application of our method, we calculate in this section the 
profile of the state n 1 = {4,0,0) of hydrogen; this level has been chosen 
because the radiative transition {4, 0, 0} ~ (2, 1,0} is one of the compo- 
nents of the H~ line. 

We choose L 1 = 0 and we introduce the following approximations: 

m < < M ~ M +  m e ~ A ~  1, ? t ~ 0  (4.1) 

1 << L (4.2) 

Approximation (4.2) allows the use of expansion in powers of l / L ;  it means 
that we only take into account long-range (with respect to the atomic 
radius) electron-atom interaction; so, it appears to be consistent with the 
weak coupling approximation which led to Eq. (3.14); within this approxi- 
mation, the electron-atom interaction is reduced to the dipolar interaction, 
as can be seen in the following equations. Using (4.1) and (4.2), (3.15) and 
(3.17) lead to 

~,(On,m)= - 8~3---- ~ ~4 , ' e  faLald.',; / - - _ _ ~ -  II" 3L%'(L)[2 ~(p-- 2h-l) 
h 2 L = / 2 m ~ - c n / m ) ,  - p - -  E 

~;sc(0nlE) = - - -  

X 

- -  e4ne (dl@ z I< ,ln, r/zt.>r 
8.'n3eo 2 n f l  l 2 ( h 2 1 2 / 2 M ~ ; - ( h T ~ l -  p + E n - 

(4.3) 

where <n~[l- r / l [ n )  is the usual dipolar matrix element with respect to the 
l / l  axis. A rough evaluation shows that the main contribution to the 
dressing potential arises from the n = {v, l, m) terms of Ws~(0nlE ) in which 
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p = 4; so, we are led to calculate 

~-sc(On~E) = - e4n----L~ f dldp 1 
8~r3% 2 l 2 (h212/2m) 

Q4~(I/ t )  

+ ( h / m ) l . p  + E 4 -  E 
q~(P) 

(4.5) 

where 

q~ll(Pll) = --dP• p(p), Pll = 7 " p' P J- = p - 7 Pll (4.8) 

On00 = ~ ~4-4~ du[(a00[u, rla/m)l 2 (4.9) 
lm ")lu[=l 

Then, Q400 is evaluated by using the matrix elements (n~lx + iyin), 
(n~lx - iyln ) and (n~lz[n) tabulated in Ref. 16; we find 

Q4o0 = 720.0~ra02 (4.10) 

where a 0 is the Bohr radius. 
We use the normalized electron momentum distribution function 

@3 1 
- (4.11) 

ep(p) 7r 2 (P2 + P~ 3 

which is a rather good approximation for the Maxwellian distribution 
function; its advantage lies in the fact that it allows analytical calcula- 
tions;(~o) the temperature is given by 

1 3pg (4.12) -} k r= f.p p2~(p)_  2m 

(4.7) 

where 

! 1 . rl41rn)12 (4.6) Q400( 7 ) = E ~4-41(400] 7 
lm 

The meaning of this approximation is the following: the main contribution 
to the dressing potential arises from collisions in which the intermediate 
state [see interpretation of Osc(Llnlz) in Section 3] has the same energy (has 
almost the same energy if fine and hyperfine structure are taken into 
account) as the unperturbed state: a nondegenerate and well-separated 
atomic state would suffer a negligible dressing potential. 

If the momentum distribution function ~(p) is isotropic we find 

~f(0nlE ) = e4nea4oo ( ~  ( +  ~dPll cP/I(PIi) 
8W3s "JO d[.)-o~ (h212/2m) + (h/m)IpL t + E 4 - 
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where k B is the Boltzmann constant, and ~ll(Pll) is 

2p0 1 
~[l(Plr)- 7r (p~ +po 2) (4.13) 

Finally, the right-hand side of (4.7) is evaluated by the usual complex 
plane method: 

Integral o v e r  dp/I is performed by closing the contour in the lower half 
plane [we have to keep in mind that the right-hand side of (4.7) is the 
analytical continuation of ihOsc(Onlz) defined for z in the upper half 
complex plane!). 

Before performing integration over dl, we insert factor 14/ ( l  2 + x2) 2 (K 
is the Debye vector) in (4.7) in order to take into account the screening 
effects; moreover, we see that this factor avoids the long distance diver- 
gence (small l) for E = E 4. We also notice that the short distance conver- 
gence (large l) has been deeply altered by the expansion into powers of 
l / L ;  in order to restore the initial convergence we introduce a cutoff 
lma,, = l / a ,  where a = 24a 0 is the mean radius of the (4,0,0} atomic state. 
Then we calculate 

. . . .  . . . .  

/'max 

by using the properties of the complex logarithmic function (the cut is 
chosen to be the positive real axis). 

From (3.20) we find 

~'(OnLz ) = (E,,, + ihOsc(Onlz ) - h z )  - I  (4.14) 

so, the profile (or the density of states) of the perturbed level is given by the 
imaginary part of ~'(0, (4, 0, 0}, E/h)  for $ real, (17) i.e., 

p ( E ) = A X m I ~ s c ( O , { 4 , 0 , O ) , $ ) + E 4 - - E ] - ' ,  $ E R  (4.t5) 

instead of 
p 

p(E) = A I m ( E  4 - ~)  1 AIm E4 ~ E 

= 'rrA6(E 4 - $),  E E 

- -  + i .n6(E 4 - E)] 

for the unperturbed atom (isolated atom); here P / z  stands for the Cauchy 
principal part of 1 / z .  Constant A can be evaluated by requiring the profile 
to be normalized to unity. Figure 1 shows the profile p(A~) as a function of 

(~ -- E~)~o ~ 
2~ = he (4.16) 

where Xo is the wavelength of the Hp line. 



714 Soulet and Gomes 

I . B ,  

. 8 ,  
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i l l  t i i  - , (  . . . .  

Profile of the n I = {4, 0, 0} state of hydrogen obtained analytically. Fig. 1. 

5. DISCUSSION 

The profile we have obtained analytically is a very rough approxima- 
tion to the true profile; in particular it leads to a broadening of the H• line 
greater than the experimental value (half width 18.5 A instead of t6 A, 
when n e = 2 • 1022 par t . /m 3 and T = 13400K). 

We have introduced in (4.7) the Debye potential which is the static 
approximation of the true screened potential as Balescu has shown(~~ it 
holds for long time evolution equations but it is not convenient for 
describing short time phenomena as electron-atom collisions leading to 
shift and broadening of atomic levels. The next task is thus the summation 
of the ring diagrams for electrons and ions in order to take correctly into 
account the collective effects. 

Also, we notice that integrations over dl have been approximated when 
we have introduced the expansion in powers of I / L  and limited the range 
of integration by means of the cutoff /max ( t h i s  cutoff also appears in the 
usual theories of line broadening). An exact calculation of this integral 
would avoid the necessity of the cutoff. 

Moreover, we underline the fact that an improvement can be obtained 
by using the distorted wave functions for atomic states. The dressing 
potential (4.4) involves a summation over the intermediate states n; if terms 
corresponding to E n :P En, are not disregarded, then one can see that the 
corresponding profile P(E)  of the perturbed state n 1 has a main bump 
around Enl but also has small bumps around E n for n :~ n~. The true atomic 



Causal Green's Function Formalism 715 

state n 1 has to be considered as some linear combination of atomic states: 

t rue  ( r )  = 
n = l  

in which 

IC.,.,I >> I c.,.I, 
such that its corresponding profile has only a bump around E,, (no bump 
around E, for n ~ n 0. 

In this paper we have developed the foundations of a possible applica- 
tion of composite particle theories to the determination of shift and 
broadening of atomic lines in plasmas. This method appears to be promis- 
ing because it is completely general: 

It holds out of equilibrium; in particular it allows us to take into 
account collective effects (summation of ring diagrams) even in the unsta- 
ble case. 

It includes correlation contributions which can play an important role 
in turbulent situations. 

It includes all the exchange effects: symmetry effects between atomic 
electrons and free electrons as well as symmetry effects between free 
electrons (high-density plasmas). The task lies in the choice of the classes of 
diagrams corresponding to the various phenomena we want to take into 
account. 

Finally, we point out that we do not need to perform a Fourier 
transform as in the usual methods leading to shift and broadening of 
atomic lines; this is the reason why it has been possible to obtain analyti- 
cally a meaningful approximate profile. 
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